2023 Annual Drinking Water Quality Report

For the Period of January 1 to December, 2023 Consumer Confidence Report Public Water System TX0150138

www.eastcentralsud.org

East Central Special Utility District is pleased to present its 2023 Annual Water Quality Report in accordance with the United States Environmental Protection Agency (EPA) National Primary Drinking Water Regulations, which will provide important information about your drinking water and the efforts made by the water system to provide safe drinking water.

For more information regarding this report call (210) 649-2383.

Este reporte incluy información importante sobre el agua para tomar. Para asistencia en español, favor de llmar al teléfono (210) 649-2383.

Public Participation Opportunities

Date: 2nd Thursday of every Month Time: 7:00 P.M.

Location: 12452 Hwy 87 E, Adkins, TX 78101 Phone Number: (210) 649-2383

Source of Drinking Water

East Central Special Utility District (ECSUD) is served by purchased surface water and purchased groundwater, which provides service to 8700 active meters. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and aquifers. As water travels over the surface of land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and picks up substances resulting from the presence of animals or from human/industrial activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

TCEQ completed a Source Water Susceptibility for all drinking water system that own their sources. This report described the susceptibility and types of constituents that may come into contact with the drinking water source based on human activities and natural conditions. The system(s) from which we purchase

our water received the assessment report. For more information on source water assessments and protection efforts please contact our office.

Definitions

The following table contain scientific terms and measures, some of which may require explanation.

	T						
Action Level (AL)	The concentration of contaminant which, if exceeded, triggers treatment or other						
7.10.11.11.20.10.1(7.12)	requirements which a water system must follow.						
Avg	Regulatory compliance with MCLs is based on running annual average of monthly						
AV8	samples.						
	A Level 1 assessment is a study of the water system to identify potential						
Level 1 Assessment	problems and determine (if possible) why total coliform bacteria have been found						
	in our water system.						
	A Level 2 assessment is a very detailed study of the water system to identify						
Level 2 Assessment	potential problems and determine (if possible) why an E. coli MCL violation has						
Level 2 Assessment	occurred and/or why total coliform bacteria have been found in our water system						
	on multiple occasions.						
Maying up Cantaminant Laval (MCL)	The highest level of a contaminant that is allowed in drinking water. MCLs are set						
Maximum Contaminant Level (MCL)	as close to the MCLGs as feasible using the best available treatment technology.						
Maximum Contaminant Level Goal	The level of a contaminant in drinking water below which there is no known or						
(MCLG)	expected risk to health. MCLGs allow for a margin of safety.						
Maximum residual disinfectant level	The highest level of a disinfectant allowed in drinking water. There is convincing						
or MRDL	evidence that addition of a disinfectant is necessary for control of microbial						
OI MADE	contaminants.						
Maximum residual disinfectant level	The level of drinking water disinfectant below which there is no known or						
goal or MRDLG	expected risk to health. MRDLGs do not reflect the benefits of the use of						
goat of PINDEG	disinfectants to control microbial contaminants.						
MFL	Million fibers per liter (a measure of asbestos)						
mrem	Millirems per year (a measure of radiation absorbed by the body)						
na	Not applicable						
NTU	Nephelometric turbidity units (a measure of turbidity)						
pCi/L	Picocuries per liter (a measure of radioactivity)						
ppb	Micrograms per liter or parts per billion						
ppm	Milligrams per liter or parts per million						
ppq	Parts per quadrillion, or picograms per liter (pg/L)						
ppt	Parts per trillion, or nanograms per liter (ng/L)						
Treatment Technique or TT	A required process intended to reduce the level of a contaminant in drinking water						

- East Central SUD purchases water from CRWA Wells Ranch WTP. CRWA Wells Ranch provides purchase ground water from the Wilcox & Carrizo Aquifer located in Guadalupe and Gonzales Counties.
- East Central SUD purchases water from CRWA-Lake Dunlap WTP. CRWA-Lake Dunlap provides
 Dunlap WTP provides purchase surface water from Canyon Lake via Lake Dunlap located in
 Guadalupe County.
- ➤ Water systems that purchase drinking water are required to list the regulated contaminants in the water system they purchase from unless that contaminant has been separately monitored in their own system. ECSUD purchases its drinking water from CRWA Wells Ranch WTP and CRWA-

Lake Dunlap WTP. The following tables represent regulated contaminants detected in the CRWA-Wells Ranch WTP and CRWA-Lake Dunlap WTP.

CRWA-WELLS RANCH WTP

Microbiological	l Contaminant	s						
Contaminant	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violatio n	Likely Source of Contamination
Total Coliform Bacteria	2023	Absent	N/A	0	MCL: (systems that collect 40 or more samples per month) 5% of monthly samples are positive. (Systems that collect <40 samples/mo nth = 1 positive monthly sample	N/A	N	Naturally present in the environment
Fecal coliform and E. coli	2023	Absent	N/A	0	0	N/A	N	Human and animal fecal waste

Inorganic Contaminants

	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Cyanide	2023	ND	N/A	200	200	ppm	N	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Nitrate (measured as Nitrogen)	2023	.18	0.18-0.18	10	10	ppm	N	Runoff from fertilizer use; leaching from septic sewage erosion of natural deposits.

Volatile Organic Contaminants

votatite Organic Contaminants											
	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination			
Benzene	2023	ND	0 - 0	0	5	ppb	N	Discharge from factories; leaching from gas storage tanks and landfills			
Carbon tetrachloride	2023	ND	0 - 0	0	5	ppb	N	Discharge from chemical plants and other industrial activities			
Chlorobenzene	2023	ND	0-0	100	100	ppb	N	Discharge from chemical and agricultural chemical factories			

	1	1	1		1	1	1	1
0-Dichlorobenzene	2023	ND	0 – 0	600	600	ppb	N	Discharge from industrial chemical factories
p-Dichloroethane	2023	ND	0-0	75	75	ppb	N	Discharge from industrial chemical factories
1,2-Dichloroethane	2023	ND	0-0	0	5	ppb	N	Discharge from industrial chemical factories
1,1-Dichloroethylene	2023	ND	0-0	7	7	ppb	N	Discharge from industrial chemical factories
Cis-1,2- Dichloroethylene	2023	ND	0-0	70	70	ppb	N	Discharge from industrial chemical factories
Trans-1,2- Dichloroethylene	2023	ND	0-0	100	100	ppb	N	Discharge from industrial chemical factories
Dichloroemethane	2023	ND	0-0	0	5	ppb	N	Discharge from pharmaceutical and chemical factories
1,2 Dichloropropane	2023	ND	0-0	0	5	ppb	N	Discharge from industrial chemical factories
Ethylbenzene	2023	ND	0-0	700	700	ppb	N	Discharge from petroleum refineries
Styrene	2023	ND	0-0	10	100	ppb	N	Discharge from rubber and plastic factories; leaching from landfills
Tetrachloroethylene	2023	ND	0-0	0	5	ppb	N	Leaching from PVC pipes; discharge from factories and dry cleaners
1,2,4-Trichloroethane	2023	ND	0-0	70	70	ppb	N	Discharge from textile-finishing factories
1,1,1-Trichloroethane	2023	ND	0-0	200	200	ppb	N	Discharge from metal degreasing sites and other factories
1,1,2- Trichloroethylene	2023	ND	0-0	3	5	ppb	N	Discharge from industrial chemical factories
Trichloroethylene	2023	ND	0 – 0	0	5	ppb	N	Discharge from metal degreasing sites and other factories
Toluene	2023	ND	0-0	1	1	ppm	N	Discharge from petroleum factories
Vinyl Chloride	2023	ND	0-0	0	2	ppb	N	Leaching from PVC piping; discharge from plastics factories
Xylenes	2023	ND	0-0	10	10	ppm	N	Discharge from petroleum factories

CRWA - LAKE DUNLAP WTP

Table of Contaminants

Microbiologica	ıl Contaminan	ts						
Contaminant	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Total Coliform Bacteria	2023	Absent	N/A	0	MCL: (systems that collect 40 or more samples per month) 5% of monthly samples are positive. (Systems that collect <40 samples/month-1 positive monthly samples	N/A	N	Naturally present in the environment
Fecal coliform and E. coli	2023	Absent	N/A	0	0	N/A	N	Human and animal fecal waste
TOC	2023	2.04	.92 – 2.05	N/A	Π	Mg/L	N	Naturally present in the environment

Turbidity	Level Detected	Limit (Treatment Technique)	Violation for Year 2023	Likely Source of Contamination
Highest Single Measurement	0.18 NTU	1 NTU	N	Soil runoff
Lowest Monthly % Meeting Limit	100%	0.3 NTU	N	Soil runoff

Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

Radioactive Contaminants – Monitored at the water plants

Madioactive Conta	aiiiiiiaiit	Profitored at the water plants									
Contaminants	Collectio n Date	Highest Level Detecte d	Range of Levels Detecte d	MCLG	MCL	Units	Violation	Likely Source of Contamination			
Beta/photon emitters	2023	ND	N/A	0	4	pCi/L	N	Decay of natural and made-made deposits			
Alpha emitters	2023	ND	N/A	0	15	pCi/L	N	Erosion of natural deposits			
Radium-228	2023	0.843	N/A	0	5	pCi/L	N	Erosion of natural deposits			

Inorganic Contaminants – Monitored at the Plants

solder

Arsenic	2023	ND	N/A	N/A	10	ppb	Z	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes
Barium	2023	0.0476	0.0476 – 0.0476	2	2	ppm	N	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Beryllium	2023	ND	N/A	4	4	ppb	N	Discharge from metal refineries and coal- burning factories
Cadmium	2023	ND	N/A	5	5	ppb	N	Corrosion of galvanized pipes
Chromium	2023	ND	N/A	100	100	ppb	N	Discharge from steel and pulp mills
Mercury (inorganic)	2023	ND	N/A	2	2	ppb	N	Erosion of natural deposits
Nitrate (as Nitrogen)	2023	ND	N/A	10	10	ppm	N	Runoff from fertilizer use
Nitrite (As Nitrogen)	2023	ND	N/A	1	1	ppm	N	Runoff from fertilizer use
Selenium	2023	ND	N/A	50	50	ppm	N	Discharge from petroleum and metal refineries
Thallium	2023	ND	N/A	0.5	2	ppb	N	Erosion of natural deposits

Synthetic Organic Contaminants Including Pesticides and Herbicides

Alachlor	2023	ND	N/A	0	2	ppb	N	Runoff from herbicide used on row crops
Atrazine	2023	ND	N/A	3	3	ppb	N	Runoff from herbicide used on row crops
Benzo(a)pyrene	2023	ND	N/A	0	200	ppt	N	Leaching from linings of water storage tanks and distribution lines
Dalapon	2023	ND	N/A	200	200	ppb	N	Runoff from herbicide used on rights of way

Di(2- ethylhexyl)adipate	2023	ND	N/A	400	400	ppb	N	Discharge from chemical factories
Di(2- ethylhexyl)phthalate	2023	ND	N/A	0	6	ppb	N	Discharge from rubber and chemical factories
Endrin	2023	ND	N/A	2	2	ppb	N	Residue of banned insecticide
Heptachlor	2023	ND	N/A	0	400	ppt	N	Residue of banned insecticide
Heptachlor epoxide	2023	ND	N/A	0	200	ppt	N	Breakdown of heptachlor
Hexachlorobenzene	2023	ND	N/A	0	1	ppb	N	Discharge from metal refineries and agricultural chemical factories
Hexachlorocycl- opentadiene	2023	ND	N/A	50	50	ppb	N	Discharge from chemical factories
Methoxychlor	2023	ND	N/A	40	40	ppb	N	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock
Simazine	2023	ND	N/A	4	4	ppb	N	Herbicide runoff
Toxaphene	2023	ND	N/A	0	3	ppb	N	Runoff/leaching from insecticide used on cotton and cattle

PFAS

PFAS stands for per-and polyfluoroalkyl substances, which are a group of chemicals used to make products that resist heat, oil, stains, grease, and water. PFAS has a strong carbon-fluorine bond that makes them persistent in the environment and in the bodies of animals and people, posing health risks.

Lake Dunlap WTP was selected as a UCMR₅ (Fifth Unregulated Contaminant Monitoring Rule) sample sight for PFAS. There was one sample over the MRL.

Additionally, any Public Water System with a sample above the Minimum Reporting Level (MRL) is required to report this on their CCR (it is per sample, not a running annual average).

The following links to EPA's UCMR₅ website for more information.

https://www.epa.gov/dwucmr/fifth-unregulated-contaminant-monitoring-rule#qanda

PFAS

Parameter Name	Parameter Abbreviation	Reporting Limit (ng/L)	EP001/Results (ng/L)
Perfluoropentanoic acid	PFPeA	3.01	3.71

Special Information

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800) 426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with

service lines and home plumbing. The water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several house, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes, before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

All Drinking Water May Contain Contaminants

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the business office.

Secondary Constituents

Many constituents (such as calcium, sodium, or iron), which are found in drinking water, can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document, but they may affect the appearance and taste of your water. The secondary constituents' results are available for this System on Texas Drinking Water Watch.

REGULATED CONTAMINANTS DETECTED

Coliform Bacteria

Maximum contaminant	Total Coliform	Highest No.	Fecal Coliform or	Total No. of	Violation	Likely Source of Contamination
Level Goal	Maximum	of Positive	E. Coli or Fecal	Positive E. Coli or	(Y/N)	
	Contaminant Level		Coliform Samples	Fecal Coliform		
				Samples		
0	1 positive monthly sample	1	N/A	0	N	Naturally present in the environment

Lead and Copper - Monitoring done at Customer's Tap

Parameters/ Substance	Date Sample	MCLG	Action Level (AL)	90 th Percentile	# Sites Over AL	Units	Violation (Y/N)	Likely Source of Contamination
Copper	08/25/2022	1.3	1.3	0.078	0	Ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems
Lead	08/25/2022	0	15	2.2	0	Ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits

Disinfection By-Products – Monitored at the Distribution System

Parameters/ Substance	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2023	3	0 -3.2	No goal for total	60	Ppb	N	By-product of drinking water disinfection.

^{*}The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year.

Total Trihalomethanes (TTHM)	2023	22	7.2 – 34.7	No goal for total	80	Ppb	N	By-product of drinking water disinfection
------------------------------------	------	----	------------	----------------------	----	-----	---	---

^{*}The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year.

Inorganic Contaminants - Monitored at the Distribution System

Parameters/ Substance	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Nitrate measured as Nitrogen	2023	1	0.14 – 1.44	10	10	Ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Residual Disinfectant Level - Monitored in the Distribution System

Parameters/ Substance	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation	Source in Drinking Water
Free Chlorine	2023	1.84	.7 – 1.93	4	4	Mg/L	N	Water additive used to control microbes

Water Loss

In the water audit to the Texas Water Development board for the time period of January 1, 2023 to December 31, 2023, our system lost an estimated 181,270,041 gallons of water through main breaks, leaks, inaccurate customer metering and theft.